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The reduct ion of the s y s t e m  of h e a t - t r a n s f e r  equations in phases  of a d i spe r s e  med ium to a 
single equation is considered.  The p r o b l e m  of heat ing a l aye r  of g ranu la r  m a t e r i a l  by a 
s t r e a m  of hot fluid is inves t iga ted  as an i l lustrat ion.  

The r egu la r i t i e s  of heat  t r a n s f e r  between granular  m a t e r i a l  pa r t i c l e s  and the flux of a continuous medium 
a re  of s ignif icant  applied in t e re s t  in connection with p r o c e s s e s  of heat  t r e a t m e n t  of i t ems  in g ranu la r  h e a t -  
c a r r i e r  l a y e r s ,  of dry ing  and roas t ing  d i s p e r s e d  m a t e r i a l s ,  of chemica l  r e a c t o r  opera t ion ,  and of o ther  appa -  
ra tus  with a fixed or  f luidized g ranu la r  bed, as well  as in connection with p r o b l e m s  of m a s t e r i n g  geo the rmal  
r e s o u r c e s ,  producing t h e r m a l  methods  of act ing on o i l -bea r ing  s t r a t a ,  e tc .  

Mathemat ica l  model ing of h e a t - t r a n s p o r t  p r o c e s s e s  in d i s p e r s e  media  and the product ion of engineer ing  
methods  for  the i r  ana lys i s  under  di f ferent  specif ic  conditions a r e  made difficult  both by the lack  of a sufficiently 
r ep re sen t a t i ve  genera l  phys ica l  model  and uncer ta in t ies  man i fes ted  in applying known pa r t i a l  va r i an t s  of the 
model  and by the fact  that  the r e su l t s  obtained using them as a b a s i s  a r e  o rd inar i ly  quite awkward and do not, 
by f a r ,  a lways allow s imple  in te rpre ta t ion .  Hence,  in addition to the genera l  p rob l em of developing and p e r -  
fect ing the phys ica l  model  i tself ,  the p rob lem a lso  occurs  of inves t igat ing the appl icabi l i ty  conditions of the 
pa r t i a l  va r i an t s  and of the i r  fu r the r  s implif icat ion.  One of the widesp read  methods  of desc r ib ing  the heat  
t r a n s f e r  in a d i spe r s e  med ium is cons idered  below in such a context.  

F o r  s impl ic i ty  we l imi t  ou r se lves  to an invest igat ion of the heat  t r a n s f e r  in a fixed g ranu la r  m a s s  in 
which a fluid is f i l t e red  with a f i l t ra t ion  veloci ty  eu and the contact  hea t  conduction ove r  the body fo r med  by 
the p a r t i c l e s  is neglected.  We wr i t e  the h e a t - t r a n s f e r  equation in phases  in a continual approximat ion  in 
"quas i s t a t ionary"  fo rm:  

~doCo +uv ~o= ;~aT0--~(~0--~,), (1--~)d,c, 0--~--=~(n--~d. (1) 

The coeff ic ients  )t and/3 a r e  he re  cons idered  independent of the coordinates  and t ime.  Equations of type (1) 
w e r e  quite f requent ly  used on an e m p i r i c a l  bas i s ;  they were  introduced in the domes t i c  l i t e r a t u r e ,  e . g . ,  in 
[1-3], and they were  obtained r i go rous ly  on the basis  of ave rag ing  over  the volume and the ensemble  in [4, 5]. 
Neglect ing the contact  heat  conduction under  conditions o rd ina r i ly  encountered is fully just i f ied as can be seen 
f r o m  numerous  e x p e r i m e n t s  as well  as f r o m  an ana lys i s  of such conduction and the rma l  r e s i s t a n c e  of a single 
contact  in [6, 7]. Radiat ion heat  t r a n s f e r  is not taken into account in (1), which l imi t s  the ana lys i s  to sufficiently 
low t e m p e r a t u r e s .  

The independence of X and fl f r o m  the coordinates  a s s u m e s ,  f i r s t ly ,  the s t ruc tu ra l  homogenei ty  of the 
g ranu la r  m a t e r i a l .  Secondly, when the Reynolds  and Pgcle t  numbers  for  a single pa r t i c le  a re  la rge  c o m -  
pa red  to one so that convective heat  d i spe r s ion  in the in te r sec ted  pore  space of the m a t e r i a l  and the convec-  
t ive hea t  flux on the par t i c le  play a pa r t ,  homogenei ty  of the f i l t ra t ion  flux is a l so  requ i red  fo r  this.  The 
t ime  independence of k and fl a s s u m e s  that the c h a r a c t e r i s t i c  t ime  of a subs tant ia l  change in the mean  phase  
t e m p e r a t u r e s  r0, T 1 is cons iderably  g r e a t e r  than the inner and outer  local  re laxa t ion  t imes  of the t e m p e r a t u r e  
f ields outside and inside a single par t i c le .  These  t imes  agree  with a2d0cr a2dlcl/kt, r e spec t ive ly ,  in 
o r d e r  of magnitude for  low Reynolds  and P6clet  numbers .  As these  numbers  i n c r e a s e ,  the re laxa t ion  t imes  
for  a l aye r  of pa r t i c l e s  of this s ize d iminish  monotonical ly  (see [8], for  example ) .  If the l as t  condition is not 
satisfiect,  then both the f requency  d i spe r s ion  of the effect ive  heat  conduction s and the t ime dependence of the 
Nusse l t  numbe r  for  a pa r t i c l e ,  i . e . ,  the d i spe r s ion  of the effect ive coefficient  of in te rphasa l  heat  t r a n s f e r  fl 
inves t iga ted  in [9], a r e  e s sen t i a l  so that  the quas i s t a t iona ry  formula t ion  cons idered  he re  ceases  to be t rue .  
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The solution of different boundary-value problems for (1), if it is generally successfully obtained, will 
ordinarily yield results difficult to see. Hence, it is desirable to reduce the investigation of system (I), first, 
to the analysis of a certain equation for a single dependent variable. Such a program is actually formulated 
by N. V. Antonishin and his co-workers (see [10], for example). Paper [9] is analogous in nature. 

To obtain such an equation it is sufficient to express the quantity Ti in terms of v0 in the general operator 
form from the second equation in (1) and to use the formal expansion of the operator in a Taylor series. We 

obtain 

�9 ! = To = ( _  l)n~ 0%0 (I - -  ~) d~ci 
l + ~ a l a t  ~=0 a C  ' c~ = I~ ' (2)  

where  a t  is the "na tu ra l  ~ t ime  scale  of the hea t -conduct ion  p r o c e s s  in a two-phase  d i spe r sed  medium.  Sub- 
st i tution of (2) into the f i r s t  equation in (1) r e s u l t s  in obtaining the des i r ed  equation which, however ,  contains an 
infinite chain of t ime  de r iva t ives  of a r b i t r a r i l y  high o rde r .  

It is convenient  to introduce a "na tura l"  l inea r  sca le  a x and d imens ion less  v a r i a b l e s  and p a r a m e t e r s  in 
conformity  with the equal i t ies  

doco ~, doco 
(3) 

in  a d d i t i o n  t o  t h e  at.  Sys tem (1) then takes  the f o r m  

0% - T0 - -  Ti, (4)  

and the ~'equivalent" equation obtained is agaIn wr i t t en  in the f o r m  

0~o (I+~) ~--+UvRT0= . (--I) n - -  ~T0 . ART0. (5) 
aT n 

Different approximate models correspond to retaining a different number of time derivatives in (5). 
Thus, neglecting aH such derivatives (the zero approximation) is possible only for the description of the 
stationary heat-transfer process. The next, first, approximation results in the usual single-phase parabolic 
equation of convective heat conduction, in which the effective specific heat equals the mean specific heat of 
the granular material filled with a fluid. This approximation evidently corresponds to an assumption about 
the instantaneous equalibration of the phase temperatures. Such a single-temperature model was considered 
in [11, 12], for example. The second approximation results in an elliptic equation for T O (the possibility of 
the appearance of elliptic equations in heat-transport processes in a dispersed medium was apparently first 
noted in [9]) etc. In contrast to the zero and first approximations, the second approximation takes account of 
the difference in the phase temperatures and, therefore, corresponds to a two-temperature model of a dis- 

persed medium. 

An operator expansion of type (2) has been used earlier in reports on the construction of simplified 
rheological models of non-Newtonian media (see [13], for instance) and has meaning only if the time scale 
a~ -I of the quantity T O is very much greater than the natural scale a t. In fact, upon replacing the operators on/ 
3t n in (2) by aP, it is easy to see that the series obtained has a finite radius of convergence oJ -- c~ I. Therefore, 
the condition of applicability, in principle, of the approximations discussed above reduces to compliance with 
the inequality o~ << c~ "I for the characteristic frequency of the real heat-transfer process. 

For a small P~'clet number, the steady value of the heat elimination coefficient for a single particle 
is on the order of k/a; the number of particles per unit volume is proportional to (1-e)/a '~. Hence, we have 
~ (1-e)k/a 2. Using this in the expression for at from (2), we see that a t has the same order of magnitude 

as one or even both the relaxation times mentioned above. (In this case at t-1 is the inverse to the Fourier 
number usually introduced. However, this is not so, e.g., in the case when the Pe%let number is large, i.e., 
convective heat transfer to the particle dominates.) Hence, the condition ~ << c~t -t is equivalent to the condition 
for the validity of the quaslstationary model itself in (I), and if this model is legitimate, then the analysis of 

its mentioned approximations is equally legitimate. 

The connection between the solutions of the "exact" equations (4) and the different approximations ob- 
tained from (5) is investigated below in an example of the one-dimensional problem on the heating of a semi- 
infinite granular mass, which is of independent interest. A fluid flow with temperature v, flows into a mass 
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occupying the haft  space x > 0; the initial t emp e ra tu r e  of the mass  is zero .  For  s implif icat ion,  the boundary 
condition of the f i r s t  kind is simply taken for  x = 0, i .e . ,  heat  t r an s f e r  in the domain x < 0 is not considered.  

F o r  such a p rob lem sys tem (4) has the fo rm 

0~o , t~ 0~o 02~o (% _ ~ ) ,  O'q _ ~o - -  % (6) 
Y - - ~  ~ '-' OX OX 2 OT 

and Eq. (5), inwhich only N pr incipal  t ime de r iva t i ve s  remained,  is wr i t ten  in the fo rm 

N 
(1.+.u ~ I_U 0 " r  On% A_ 0%0 . (7) 

O T O X n ~  = OT n ' O X ~- 

The boundary conditions fo r  (6) and (7) a re  wri t ten  identical ly:  

�9 0 = % ,  X = 0 ,  T />0;  ~0~0 ,  X-+oo, T / > 0 .  (8) 

The initial conditions fo r  the sys tem (6) a re  also of s tandard  fo rm:  

To=~:~=0, X:>0 ,  T = 0 .  (9) 

The initial conditions fo r  (7) follow formal ly  f rom (2) and (9): 

~ 0  = ,  oN--l  'I70 
% -  OT . . = ~ = 0 ,  X > 0 ,  T = 0 .  (10) 

Moreover ,  it is somet imes  more  convenient to use the physical ly evident condition 

lira % -- %, X 9 0 .  (11) 

For  s implif icat ion of the calculat ions,  the degree  of approximation rea l ized  by the solution of the prob-  
lem for  (7) to the solution of (6) will be cons idered  separa te ly  for  the cases  U << 1 and U >> 1 (conductive or  
convective heat  t r a n s f e r  predominates)  fo r  T ~ 0 (which cor responds  to a gas flow). Let  us apply the Laplace 
t r a n s f o r m  in var iable  T. The t r an s fo rm  of the solution of p rob lem (5), (8), (9) for  U << 1 has the fo rm 

% -- I e x p ( - - X  ~ - - - - P - - ) = - ~ - I  ~ ( -1 )~  I P ~/2X~'  (12) 

so that a fo rmal  represen ta t ion  follows for  the original  in the fo rm of a s e r i e s  which can turn  out to be con- 
venient fo r  small  X: 

% = 1--exp - -  XIo -~-  ]/'~'- .=2 % nT ,o (T) 

where I0(x) is the Besse l  function of imaginary argument  and IvIv,0(x) is the Whit taker degenerate  hypergeo-  
m e t r i c  function. 

F o r  values  of T >> 1, whichare  only of in te res t  in the context of this work,  expansion (12) in a s e r i e s  in 
p must  be used: 

[ ( ) ( ] (X ]/p-) 2 p 3 f  + . .  + .  . (14) p 3 f  . . . .  ~ . . .  
% e x p ( - - X V p - )  1 4-, X-]/ 'p 2 8 2 2 8 
a:. p 

The solution of p rob lem (7), (8), (10), for  the parabol ic  equation (the s e r i e s  in (7) is general ly d i s -  
carded) resu l t s  in (14), in which all the t e r m s  in the square brackets  a re  replaced by one. The solution of 
the same problem for  an el l ipt ic  equation (only the f i r s t  t e r m  of the s e r i e s  in (7) is retained) also yields an 
express ion  of the type (14) in which the coefficient  -3/8 for  p2 in the paren theses  is rep laced  by 1/8. T h e r e -  
fo re ,  t e r m s  propor t ional  to (Xv~')np m,  where  n = 0, . . . .  m --> n, a re  in expansions (14) in the square 
b racke t s ,  fo r  all three  p rob lems  under considerat ion.  In the f i r s t  approximation (the parabol ic  equation) 
only the t e r m  with n = 0, m = 0 remains;  consequently,  the condition for  applicabili ty of this approximation 
has the fo rm Xp ~/2 << 1, which cor responds  to the inequality T >> X 2/3. The second approximation (elliptic 
equation) yields c o r r e c t  values fo r  all t e r m s  of the fo rm (X~r~np n, Hence,  as is easy  to see ,  p << 1 will be 
the condition for  its applicabi l i ty ,  which cor responds  to T >> 1. T h e r e f o r e ,  in cont ras t  to the problem fo r  
the heat-conduct ion parabol ic  equation, which approximates  the solution of the exact  problem nonunfformly 
in X, the prob lem for  the el l ipt ic  equation approximates  it uniformly,  whereby this is the fundamental ad-  
vantage of the second approximation of the problem over  the f i r s t .  The next approximations IN > 2 in (7)] 

21 



ref ine the second somewhat  for  T 2> 1 but introduce nothing new in pr inciple .  Let  us note that T 7> 1 is the 
condition fo r  the adequacy of the formulat ion of the physical  p rob lem in quas is ta t ionary  form;  hence,  the solu-  
tion of the prob lem for  the el l ipt ic  equation ks not worse  than the solution of the exact  problem. All the t e r m s  
in the pa ren theses ,  except  the f i r s t ,  can be neglected in evaluat ing the original  f rom (14). The f i r s t  two 
t e r m s  of the s e r i e s  fo r  the or iginal  have the fo rm 

~~ =erfr  ~-~--~ ~ ( - ~ - - l ) e x p (  ~ - ) ~  X (15) 
3. 2 4 t / ~ r  --  ' " ' "  ll = ~ - ' ~  - "  

It is easy  to wri te  explici t  express ions  for  even the succeeding t e r m s  of the s e r i e s  (15) which are  of high o rde r  
in powers  of T -1 by using formulas  fo r  the invers ion of the Laplace t r ans fo rm.  The exact  solution of the p rob -  
lem for  the parabol ic  equation is expres sed  by the f i r s t  t e r m  of this se r i es .  Use of s e r i e s  (15) is evidently 
convenient only for  T 7> 1, q ~ 1. 

It is ea sy  to a r r i ve  at  analogous deductions by consider ing the problem in the case U >> 1 also. The ana-  
log of (13) has the fo rm 

�9 0 l _ e x p ( _ T ) ~ d  (--1)" ( X ) "  - -  -- Ln_l (T), (16) 
T~ n=!  r/.I 

where Ln(x) is the Lague r r e  polynomial.  (Let us note that fo r  ~, ~ 0 it is impossible  to impose both condi- 
t ions s imultaneously in (10); the second condition in (10) was used in obtaining (16), jus t  as in (13).) Summing 
the s e r i e s  in (16) by using the definition of one of the generat ing functions for  the Laguer re  polynomials ,  we 
obtain a f te r  evaluation 

X/U 

x-i~ = 1 - -  exp (-- T) ~ exp (--z) I0 (2 V'-T-~) dz. (17) 
T ,  J 

0 

This is one of the possible modes  of wr i t ing  the solution of the problem under  considera t ion,  which Is In- 
vest igated in [14-18], fo r  example.  Let  us note that the cha rac t e r i s t i c  l inear  scale  

o~'~ = U~z~ = docoeul~ (18) 

is in this case independent cer ta in ly  of ~ and considerably g r ea t e r ,  fo r  U >> 1, than C~x. 

The f i r s t  approximation to problem (7), (8), (10) yie lds  the t r iv ia l  r esu l t  

�9 __~o = I 1, X / U  < T,  (19) 
"~, [0, XIU > T. 

The second cor responds  to the prob lem for  the parabol ic  equation in which the space and t ime var iab les  change 
places  (as compared  with the usual s ingle-phase heat-conduct ion equation). Supplementing (7), (8), and (10) 
by condition (11) fo r  N = 2, we obtain byus tng  the Laplace t r an s fo rm  in the var iable  X 

x,  2 / - - ~ - - - ] / ~  +exp(T)erfc  T : - ~ 4 - V ~ -  ' i = - - U - - "  (20) 

As before ,  in the case  under  considerat ion it  is easy  to show that (20) approximates  the solution of the 
exact  problem for  T 7> 1, while (19) is jus t  for  T >> v~/U. The simple solution (20) only turns  out to be just  as 
accura te  as the solution of the initial p roblem (6), (8), (9) p resen ted  in a great  number  of papers  (see [14-18], 
fo r  example) ,  within the l imits  of the accuracy  in formula t ing  the physical  problem.  The equivalent parabol ic  
equation [(7) fo r  U 2> 1 and N = 2] was obtained e a r l i e r  by Smirnova [19] by another  method. A solution of the 
type (20) was obtained by it and a compar ison  with cer ta in  exact  solutions was per formed.  

T h e r e f o r e ,  the solution of sys tem (6) or  (4) can successful ly  be replaced by the solution of (7) or  (5) in 
the general  case ,  in which only the f i r s t  t e r m  in the s e r i e s  of t ime der iva t ives  is retained.  It ks easy  to see 
that this pe rmi t s  a significant s implif icat ion of the solution of different  boundary-value problems  descr ib ing  
heat  t r a n s f e r  in a d i spersed  medium,  especial ly  those in which the domain of the solution has a complex 
shape,  with complex boundary condi t ions  given in i ts boundary,  o r  the prob lem of the heat-conduct ion equa-  
tion must  be solved additionally outside the domain mentioned with boundary conditions of the fourth kind 
given on the boundary.  
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We now obtain a representation of the solution of the specific problem considered here in the general 

case when ), ~ O, U ~ 1. Introducing the function q, 

x(X, T ) = x ,  exp(. UX2 (I +27) T )(p(X, T), - (21) 

we obtain the following equation for  ~p f rom (7) fo r  N = 2: 

o~p _~ ~q~ ( 1 + 7 )  2 4-U z (22) q~=0. 
OT 2 OX z 4 

The conditions imposed on the solution of this equation have the form 

~0=0, T - - 0 ,  and X--~oo, q0=exp(  (1 +7 )  T ~ X = 0 ,  and T--~co. (23) 
2 ] 

Let us apply the Fourier sine transform 

qD (X, T) = i @ (X, ~0) sin r 
0 

(24) 

The solution of the equation obtained f rom (22) by substi tuting (24), and which sat isf ies  the condition 
f rom (23) fo r  X -" ~,  is wri t ten  in the fo rm 

( ( ) �9 (X, o ) = C ( ~ ) e x p  - - X  ~0z+ ( I=-7)z+Uz 4 ' (25) 

where  it follows f rom the condition f rom (23) for  X = 0 that 

a , 2 n co 2 + (I + 7)z/4 
0 

(2 6) 

T h e r e f o r e ,  the solution of problem (22), (23) has the fo rm 

q)----- - -  exp - - X  o z +  (1-'-7) 2 + U  2 
4 o z+( l+Y)z/4  " 

0 

Unfortunately,  the integral  in (27) is not expressed  in t e r m s  of known functions,  but it converges  rapidly and 
can, consequently,  be es t imated  eas i ly  numerical ly .  The quantity r0 is de termined  by the relat ionship (21), 
while r t can be found f rom the relat ionship 

d% + OZ~o 
~ '  = ~ ~  - ~ -  o-V-' (28) 

which follows f rom (2) in the approximation under  considerat ion.  

Let  us note that the solution obtained in the approximation mentioned will sat isfy the f i r s t  but not the 
second initial condition in (10), whose place is taken by condition (11) in this case. This  is re la ted to the 
specif ics  of the approximate  boundary-value problem under considerat ion for the el l ipt ic  type equation and 
will resu l t ,  as is easi ly  shown, in an e r r o r  on the o rde r  of T - t ,  whichis  insignificant for  T >> 1. In pa r t i cu la r ,  
the initial t empera tu re  z 1 evaluated f rom (28) will dif fer  slightly f rom zero .  

F o r  U << 1 an expl ic i t  express ion  for  the heat flux is eas i ly  found f rom (27). Taking into account that 
r o ~ r , ~ e x p  [(1 + T)T/2], we obtain 

_ _ X _ o % o -  ~.x, e x p ( ( l + 7 ) T )  2 i e x p ( _ X / ~ Z _  L (1- -7)  z ) c0sin~0Tdt0 

o (29) 

_ ~,x.(1 +Y) T ((1 +7)T )K,(..~_~-, V - ~ - 2 - ~ )  
aaz  V T  z + X 2 exp 2 ' 

where  Kt(x) is the Macdonald function. Relat ionship (29) is useful  in the r e spec t  that it pe rmi t s  rapid e s t i -  
mation of the quantity of heat being absorbed by the granular  mate r ia l  in different  a reas  of the mass .  An 
a l te rna te  integral  represen ta t ion  for  ~a with U << 1 also follows f rom (29) (the formula  f o r  a~o/gX is considered 
as a different ia l  equation for  ~ with the obvious initial condition for  X = 0): 
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X 

( / I ) dx ,30, q~=exp - (lq-~,)T l~ -y  T Kl V ~  V T ' q - X  2 
9 , z~ . 

0 
For  U 7> 1 the exponential in (27) can be written approximately in the form exp (-XU/2), after  which 

resul t  (20) already obtained can easily be reproduced by integration. 

In conclusion, let us make two remarks  about the prospects  for  further  research  in the direction con- 
sidered. F i rs t ly ,  the assumption usually used in modeling that convective heat t ransfer  predominates in the 
presence of filtration turns out to be not so obvious by far  for  real  filtration rates as it is ordinarily assumed 
to be. Meanwhile, even the type of solution changes in going from U 7> 1 to U << 1. Hence, the heat- t ransport  
problem in infiltrable (and also porous generally) masses must be investigated in greater  detail for  inter-  
mediate values of U. This r emark  is especially important for heat t ransfer  in slightly permeable strata 
customary for the use of geothermal resources ,  the heating of oil-bearing strata ,  etc. 

Secondly, the initial nonstationary stage of a process  corresponding to the inequality T ~  1 is essential  
for  a number of problems on the heating of a granular layer  or items submerged therein (e.g., on the heating 
of a "packet" making contact with the surface in a fluidized bed). Hence,  it is quite important to investigate 
the influence of a local nonstationarity, i .e. ,  the time dependence of the quantities ~ and ~ for medium heat 
t ransfer ,  whose effective solution was acknowledged necessary  in [16, 18], e.g. ,  as well as [9]. This r emark  
re fe r s  to an equal degree to the need to take account of the presence of a layer  of elevated porosity adjoining 
the solid surface to be placed in the granular material .  The la t ter  is usually done by using the semiempirical  
insertion of the coefficient of ~contact" resistance to heat flux [20]. However, it is easy to see that it is im- 
possible to consider this coefficient a quantity independent of time in a substantially nonstationary hea t - t rans-  
port  process.  

a 

C 
e 

d 

P 
r , R  
t ,  T 
U 
U 

x, X 

T 

= x / u ;  7- 
r 

N O T A T I O N  

is the particle radius; 
is the quantity defined in (26); 
is the specific heat; 
is the density; 
is the Laplace t ransform parameter ;  
are the dimensional and dimensionless radius-vectors ;  
are the dimensional and dimensionless t imes;  
is the parameter  introduced in (3); 
is the mean velocity in the gaps between part ic les;  
are the dimensional and dimensionless coordinates; 
are  the time and linear scales;  
is the coefficient of interphasal heat transfer;, 
is the parameter  introduced in (3); 
is the porosity; 
is the heat conduction; 
is the temperature;  
is the character is t ic  frequency of the heat- t ransport  process and the Fourier  t ransform 
parameter ;  
is the function defined in (21) and its Four ier  sine transform; the subscripts zero and one re fe r  
to the continuous and dispersed phases,  respect ively,  and the upper care t  denotes the Laplace 
function transform. 
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FLOW AND HEAT TRANSFER IN COAXIAL 

AROUND AN OBSTACLE 

I. A. B elov, G. F. Gorshkov, 
and V. S. Terpigor'ev 

J E T  F L O W  

UDC 536.244:532.522 

Resu l t s  a re  p resen ted  of an exper imenta l  investigation of the gasdynamics and heat  t r a n s f e r  in 
the r e v e r s e  flow zone nea r  an obstacle  during coaxial  je t  flow on it along the normal .  

In connection with the possibi l i ty of a d i rec t ional  influence on the nature of the flow and heat  t r a n s f e r  at 
the sur face  of s t reaml ined  bodies,  a considerable  in te res t  has recen t ly  been manifes ted in the problem of in-  
t e rac t ion  between nonuniform flows of the "wake" type and blunt bodies p laced ac ro s s  the s t r e am  [1-5]. It is 
exper imenta l ly  shown in [2, 3] that a stable c i rcula t ion flow with r e v e r s e  cu r ren t s  to the cen t ra l  point of the 
body can be rea l ized  near  the body for  definite values of the ra t io  between the s t r e am  velocity at the c i r c u m -  
f e rence  and the veloci ty in the cent ra l  pa r t  (the coflow p a r a m e t e r  is m = U2/U 1 > 1). 

The authors  posed the problem of studying the effect  of the origin of the re tu rn  cur ren ts  zone for  je t  flow 
around the obstacle  and the possibi l i ty  of its p rac t i ca l  application for  the intensif icat ion of heat t r a n s f e r  in 
the a rea  of je t  in terac t ion  with obstacles .  The investigation,  on the whole,  is exper imenta l  in nature  and is a 
continuation of [2], inwhich a re  p resen ted  p re l imina ry  resu l t s  on the interact ion between a subsonic ax i sym-  
m e t r i c  j e t  with c i r c u m f e r e n t i a l  maximum velocity at the nozzle exit  and a plane obstacle.  

The exper imenta l  invest igat ions were  pe r fo rmed  on an apparatus  [6] consist ing of a wind tunnel to whose 
st i l l ing chamber  an ax i symmet r i c  con t rac to r  r ep resen t ing  a Vitoshinskii  nozzle with wais t ing 9 and exit  
d i a m e te r  d 2 = 100 mm is fas tened,  and a two-s tage  coordinating unit with measur ing  obstacles  thereon.  To 
obtain coaxial  j e t s  in the nozzle ,  an additional cent ra l  con t rac tor  with exit  d iamete r  d t = 25, 50, 75 mm is 
inser ted  along its axis. Varia t ion of the cojet  p a r a m e t e r  m assu red  the mounting of interchangeable grids 
with d i f ferent  clogging coefficients  in the  cent ra l  cont rac tor .  

The flow and heat  t r ans fe r  were  studied in the in teract ion domain by using "dynamic" and " the rmal"  
plane obs tac les  permi t t ing  the measu remen t  of the s ta t ic  p r e s s u r e  and the h e a t - t r a n s f e r  coefficient  a on the 
obstacle  sur face ,  as well as the longitudinal component of the average  velocity in the in teract ion domain near  
the obstacle .  The s ta t ic  p r e s s u r e  on the obstacle was m easu red  by drainage of the "dynamic" obstacle with a 
1 - m m - d i a m e t e r  co l lec tor  hole. The t r ansduce r  DD-6, operat ing in the range to 0.4 bar ,  was used as  p r e s -  
sure  s e n s o r i n  conjunction with the measur ing  apparatus  VI6-5MA and record ing  on anN-117 loop osci l lograph 
during continuous pulling of the obstacle ac ros s  the je t  with the distance t ied to m a r k e r s  in the path. The 
e r r o r  in de te rmining  the p r e s s u r e  did not exceed 2%. 
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